10 Ασκήσεις Τριγωνομετρίας Ανεβασμένου Επιπέδου
Μια προσφορά της ομάδας New Big Brain's Team
Κάθε άσκηση συνδυάζει μέγιστη–ελάχιστη τιμή και παράμετρο. Οι λύσεις δίνονται σε ξεχωριστό άρθρο (link στο τέλος).
1ο Έστω f(x) = 3 ημχ + 4 συνχ + λ. Να βρεθούν οι τιμές του λ ∈ ℝ ώστε η εξίσωση f(x) = 7 να έχει τουλάχιστον μία λύση στο [0, 2π).
2ο Έστω g(x) = ημ²χ – 3 ημχ + α. Να βρεθούν οι τιμές του α ώστε η εξίσωση g(x) = 0 να έχει ακριβώς δύο λύσεις στο [0, π].
3ο Έστω h(x) = 2 συν 2χ + (λ – 1) ημχ – λ. Να βρεθούν οι τιμές του λ ώστε η εξίσωση h(x) = 0 να έχει λύση στο [π/6, 5π/6].
4ο Έστω φ(x) = √(7 – 5 ημχ). Να βρεθεί το ελάχιστο και το μέγιστο της φ στο [0, 2π) και να λυθεί η εξίσωση φ(x) = m όταν α) m = 2, β) m = √3.
5ο Έστω ψ(x) = ημχ + συνχ + ημχ συνχ. Να βρεθεί το range της ψ στο [0, π/2] και να λυθεί η εξίσωση ψ(x) = κ για κ = ½.
6ο Έστω F(x) = (λ – 2) ημχ + (2λ + 1) συνχ. Να βρεθεί το ελάχιστο και το μέγιστο της F σε συνάρτηση με το λ και να προσδιοριστεί ο συνολικός αριθμός των λύσεων της F(x) = 5 στο [0, 2π) ανάλογα με το λ.
7ο Έστω G(x) = 4 ημ³χ – 3 ημχ + μ. Να βρεθούν οι τιμές του μ ώστε η εξίσωση G(x) = 0 να έχει τουλάχιστον μία λύση στο [0, π/2].
8ο Έστω H(x) = εφχ + συνχ/ημχ + λ (όπου x ∈ (0, π/2)). Να βρεθεί το ελάχιστο της H και να λυθεί η εξίσωση H(x) = 4.
9ο Έστω K(x) = ημχ + λ συνχ + λ². Να βρεθούν οι τιμές του λ ώστε η εξίσωση K(x) = 0 να μην έχει καμία λύση στο [0, π].
10ο Έστω L(x) = (ημχ + συνχ)² + α(ημχ + συνχ) + β. Να βρεθούν οι παράμετροι α, β ∈ ℝ ώστε η εξίσωση L(x) = 0 να έχει ακριβώς τέσσερις λύσεις στο [0, 2π) και το μέγιστο της L στο ίδιο διάστημα να ισούται με 8.
Λύσεις και αναλυτική μεθοδολογία στο επόμενο άρθρο: εδώ
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου